Publications

Journal papers

Noriyasu Ando*, Shuhei Emoto, Ryohei Kanzaki (2016) Insect-controlled robot: a mobile robot platform to evaluate odor-tracking capability of an insect. Journal of Visualized Experiments, 118 e54802. doi: 10.3791/54802

Noriyasu Ando*, Ryohei Kanzaki (2017) Using insects to drive mobile robots—hybrid robots bridge the gap between biological and artificial systems. Arthropod Structure and Development. in press. doi: 10.1016/j.asd.2017.02.003

Raiser Georg, Galizia C Giovanni, Szyszka Paul (2016) A high-bandwidth dual-channel olfactory stimulator for studying temporal sensitivity of olfactory processing Chem Senses 42(2):141-151. doi: 10.1093/chemse/bjw114

Ho Ka Chan, Yang D-P, Zhou C and Thomas Nowotny (2016) Burst Firing Enhances Neural Output Correlation. Front. Comput. Neurosci. 10:42. doi: 10.3389/fncom.2016.00042

Irina Sinakevitch, George R. Bjorklund, Jason M. Newbern, Richard C. Gerkin, Brian H. Smith (2017) Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human. Biological Cybernetics doi: 10.1007/s00422-017-0728-8

References

The following bibliography highlights research underpinning or related to the project.

  1. Murlis, J., Elkinton, J. S. & Carde, R. T. Odor Plumes and How Insects Use Them. Annu Rev Entomol 37, 505-532 (1992).
  2. Baker, T. C., Fadamiro, H. Y. & Cosse, A. A. Moth uses fine tuning for odour resolution. Nature 393, 530-530 (1998).
  3. Fadamiro, H. Y., Cosse, A. A. & Baker, T. C. Fine-scale resolution of closely spaced pheromone and antagonist filaments by flying male Helicoverpa zea. Journal of Comparative Physiology A 185, 11 (1999).
  4. Nikonov, A. A. & Leal, W. S. Peripheral coding of sex pheromone and a behavioral antagonist in the Japanese beetle, Popillia japonica. J Chem Ecol 28, 1075-1089 (2002).
  5. Andersson, M. N., Binyameen, M., Sadek, M. M. & Schlyter, F. Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth. J Chem Ecol 37, 899-911, doi:10.1007/s10886-011-9995-3 (2011).
  6. Szyszka, P., Stierle, J. S., Biergans, S. & Galizia, C. G. The Speed of Smell: Odor-Object Segregation within Milliseconds. PloS one 7, e36096 (2012).
  7. Stierle, J. S., Galizia, C. G. & Szyszka, P. Millisecond stimulus onset-asynchrony enhances information about components in an odor mixture. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 6060-6069, doi:10.1523/JNEUROSCI.5838-12.2013 (2013).
  8. Hopfield, J. J. Olfactory Computation and Object Perception. P Natl Acad Sci USA 88, 6462-6466 (1991).
  9. Broome, B. M., Jayaraman, V. & Laurent, G. Encoding and decoding of overlapping odor sequences. Neuron 51, 467-482, doi:DOI 10.1016/j.neuron.2006.07.018 (2006).
  10. Nowotny, T., Stierle, J. S., Galizia, C. G. & Szyszka, P. Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation. Brain research 1536, 119-134, doi:10.1016/j.brainres.2013.05.038 (2013).
  11. Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nature neuroscience 16, 1830-1839, doi:10.1038/nn.3570 (2013).
  12. Frisch, K. v. Tanzsprache und Orientierung der Bienen. Springer, Heidelberg (1965).
  13. Waser, N. M. Flower Constancy – Definition, Cause, and Measurement. Am Nat 127, 593-603, doi:Doi 10.1086/284507 (1986).
  14. Menzel, R. The honeybee as a model for understanding the basis of cognition. Nature reviews. Neuroscience 13, 758-768, doi:10.1038/nrn3357 (2012).
  15. Sandoz, J. C. Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Frontiers in systems neuroscience 5, 98, doi:10.3389/fnsys.2011.00098 (2011).
  16. Vickers, N. J. Mechanisms of animal navigation in odor plumes. The Biological bulletin 198, 203-212 (2000).
  17. Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147-159 (2000).
  18. Sachse, S., Rappert, A. & Galizia, C. G. The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. The European journal of neuroscience 11, 3970-3982 (1999).
  19. Menzel, R. The insect mushroom body, an experience-dependent recoding device. Journal of physiology, Paris, doi:10.1016/j.jphysparis.2014.07.004 (2014).
  20. Szyszka, P., Ditzen, M., Galkin, A., Galizia, C. G. & Menzel, R. Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. Journal of neurophysiology 94, 3303-3313, doi:10.1152/jn.00397.2005 (2005).
  21. Smith, B. H. Analysis of interaction in binary odorant mixtures. Physiology & behavior 65, 397-407 (1998).
  22. Jinks, A. & Laing, D. G. The analysis of odor mixtures by humans: evidence for a configurational process. Physiology & behavior 72, 51-63 (2001).
  23. Riffell, J. A. et al. Flower discrimination by pollinators in a dynamic chemical environment. Science (2014).
  24. Joerges, J., Kuttner, A., Galizia, C. G. & Menzel, R. Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285-288 (1997).
  25. Silbering, A. F. & Galizia, C. G. Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 11966-11977, doi:10.1523/JNEUROSCI.3099-07.2007 (2007).
  26. Deisig, N., Giurfa, M., Lachnit, H. & Sandoz, J. C. Neural representation of olfactory mixtures in the honeybee antennal lobe. The European journal of neuroscience 24, 1161-1174, doi:10.1111/j.1460-9568.2006.04959.x (2006).
  27. Lei, H. & Vickers, N. Central processing of natural odor mixtures in insects. J Chem Ecol 34, 915-927, doi:10.1007/s10886-008-9487-2 (2008).
  28. Deisig, N., Giurfa, M. & Sandoz, J. C. Antennal lobe processing increases separability of odor mixture representations in the honeybee. Journal of neurophysiology 103, 2185-2194, doi:10.1152/jn.00342.2009 (2010).
  29. Faber, T., Joerges, J. & Menzel, R. Associative learning modifies neural representations of odors in the insect brain. Nature neuroscience 2, 74-78 (1999).
  30. Szyszka, P., Galkin, A. & Menzel, R. Associative and non-associative plasticity in kenyon cells of the honeybee mushroom body. Frontiers in systems neuroscience 2, 3, doi:10.3389/neuro.06.003.2008 (2008).
  31. Fernandez, P. C., Locatelli, F. F., Person-Rennell, N., Deleo, G. & Smith, B. H. Associative conditioning tunes transient dynamics of early olfactory processing. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 10191-10202, doi:10.1523/JNEUROSCI.1874-09.2009 (2009).
  32. Rath, L., Giovanni Galizia, C. & Szyszka, P. Multiple memory traces after associative learning in the honey bee antennal lobe. The European journal of neuroscience 34, 352-360, doi:10.1111/j.1460-9568.2011.07753.x (2011).
  33. Akers, R. P. & Getz, W. M. Response of olfactory receptor neurons in honeybees to odorants and their binary mixtures. Journal of Comparative Physiology A 173, 16 (1993).
  34. Su, C. Y., Menuz, K., Reisert, J. & Carlson, J. R. Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492, 66-71, doi:10.1038/nature11712 (2012).
  35. Stopfer, M., Bhagavan, S., Smith, B. H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70-74 (1997).
  36. Froese, A., Szyszka, P. & Menzel, R. Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 200, 183-195, doi:10.1007/s00359-013-0877-8 (2014).
  37. Bitterman, M. E., Menzel, R., Fietz, A. & Schafer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97, 107-119 (1983).
  38. Farooqui, T., Robinson, K., Vaessin, H. & Smith, B. H. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 5370-5380 (2003).
  39. Farooqui, T., Vaessin, H. & Smith, B. H. Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. Journal of insect physiology 50, 701-713, doi:10.1016/j.jinsphys.2004.04.014 (2004).
  40. Chung, B. Y., Kilman, V. L., Keath, J. R., Pitman, J. L. & Allada, R. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Current biology : CB 19, 386-390, doi:10.1016/j.cub.2009.01.040 (2009).
  41. Hosie, A. M., Aronstein, K., Sattelle, D. B. & ffrench-Constant, R. H. Molecular biology of insect neuronal GABA receptors. Trends in neurosciences 20, 578-583 (1997).
  42. Ffrench-Constant, R. H., Mortlock, D. P., Shaffer, C. D., MacIntyre, R. J. & Roush, R. T. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. Proc Natl Acad Sci U S A 88, 7209-7213 (1991).
  43. Harvey, R. J., Chinchetru, M. A. & Darlison, M. G. Alternative splicing of a 51-nucleotide exon that encodes a putative protein kinase C phosphorylation site generates two forms of the chicken gamma-aminobutyric acidA receptor beta 2 subunit. J Neurochem 62, 10-16 (1994).
  44. Henderson, J. E., Soderlund, D. M. & Knipple, D. C. Characterization of a putative gamma-aminobutyric acid (GABA) receptor beta subunit gene from Drosophila melanogaster. Biochemical and biophysical research communications 193, 474-482, doi:10.1006/bbrc.1993.1648 (1993).
  45. Aronstein, K. & Ffrench-Constant, R. Immunocytochemistry of a novel GABA receptor subunit Rdl in Drosophila melanogaster. Invertebrate neuroscience : IN 1, 25-31 (1995).
  46. Harrison, J. B. et al. Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system in Drosophila melanogaster. Cell and tissue research 284, 269-278 (1996).
  47. Jones, A. K. & Sattelle, D. B. The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. Invertebrate neuroscience : IN 6, 123-132, doi:10.1007/s10158-006-0026-y (2006).
  48. Dupuis, J. P. et al. Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing. Journal of neurophysiology 103, 458-468, doi:10.1152/jn.00798.2009 (2010).
  49. Ffrench-Constant, R. H. & Rocheleau, T. A. Drosophila gamma-aminobutyric acid receptor gene Rdl shows extensive alternative splicing. J Neurochem 60, 2323-2326 (1993).
  50. Glueck, S. B. Molecular evolution of Rdl in insects. PhD Dissertation Cornell University (1998).
  51. Wang, Y. et al. Down-regulation of honey bee IRS gene biases behavior toward food rich in protein. PLoS genetics 6, e1000896, doi:10.1371/journal.pgen.1000896 (2010).
  52. Wang, Y., Brent, C. S., Fennern, E. & Amdam, G. V. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS genetics 8, e1002779, doi:10.1371/journal.pgen.1002779 (2012).
  53. Matsumoto, Y., Menzel, R., Sandoz, J. C. & Giurfa, M. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: A step toward standardized procedures. Journal of neuroscience methods 211, 159-167, doi:10.1016/j.jneumeth.2012.08.018 (2012).
  54. Nowotny, T., Huerta, R., Abarbanel, H. D. & Rabinovich, M. I. Self-organization in the olfactory system: one shot odor recognition in insects. Biol Cybern 93, 436-446, doi:10.1007/s00422-005-0019-7 (2005).
  55. Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H. D. & Rabinovich, M. I. Learning classification in the olfactory system of insects. Neural computation 16, 1601-1640, doi:10.1162/089976604774201613 (2004).
  56. Hammer, M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59-63 (1993).
  57. Hammer, M. & Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5, 146-156 (1998).
  58. Nowotny, T. Flexible neuronal network simulation framework using code generation for NVidia® CUDA™. BMC neuroscience 12(Suppl 1): P239 (2011).
  59. Mayer, M. S., Mankin, R. W. & Lemire, G. F. Quantitation of the Insect Electroantennogram – Measurement of Sensillar Contributions, Elimination of Background Potentials, and Relationship to Olfactory Sensation. Journal of insect physiology 30, 757-763 (1984).
  60. Sakurai, T. et al. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS genetics 7, e1002115, doi:10.1371/journal.pgen.1002115 (2011).
  61. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714, doi:10.1016/j.neuron.2004.08.019 (2004).
  62. Kanzaki, R., Minegishi, R., Namiki, S. & Ando, N. Insect-machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 199, 1037-1052, doi:10.1007/s00359-013-0832-8 (2013).
  63. Martinez, D., Arhidi, L., Demondion, E., Masson, J. B. & Lucas, P. Using insect electroantennogram sensors on autonomous robots for olfactory searches. Journal of visualized experiments : JoVE, doi:10.3791/51704 (2014).