Fast Stimuli Response

Insect antenna can resolve fast odor fluctuations. A) Odor transduction onset can occur in less than 3 milliseconds in honey bees and the moth Manduca sexta. Summed odor receptor neuron responses were measured with electroantennograms with isolated antennae (EAG, black traces, odor and blank stimuli were alternated, and the blank control was subtracted from every preceding odor-evoked EAG signal). Stimulus dynamics visualized with TiCl4 smoke as a surrogate for the odorant (red). B) EAG responses (black) to a 50 Hz pulse series. C) Periodograms of the EAG responses for the three highest resolved pulse frequencies in moth antennae. A peak in the periodogram indicates that the EAG response followed that stimulus frequency (from Szyszka P, Gerkin RC, Galizia CG, Smith BH, in revision).
Insect antenna can resolve fast odor fluctuations. A) Odor transduction onset can occur in less than 3 milliseconds in honey bees and the moth Manduca sexta. Summed odor receptor neuron responses were measured with electroantennograms with isolated antennae (EAG, black traces, odor and blank stimuli were alternated, and the blank control was subtracted from every preceding odor-evoked EAG signal). Stimulus dynamics visualized with TiCl4 smoke as a surrogate for the odorant (red). B) EAG responses (black) to a 50 Hz pulse series. C) Periodograms of the EAG responses for the three highest resolved pulse frequencies in moth antennae. A peak in the periodogram indicates that the EAG response followed that stimulus frequency (from Szyszka P, Gerkin RC, Galizia CG, Smith BH, in revision).

Insects can segregate concurrent odors from closely spaced sources based on short differences in the arrival of odorants. In preliminary experiments with different insect species, we found that odor transduction can occur within 1 to 3ms and odorant fluctuations can be resolved at frequencies above 100 Hz.

Thus, the insect brain could exploit fast stimulus dynamics for odor-background segregation, but how it accomplishes this segregation is not yet known. Moreover, learning modifies odor representations such that relevant odors become more salient, whereas less relevant odors are suppressed. This effect of odor learning might also be used to enhance odor-background segregation by making the AL more sensitive to particular odors.

It is our hypothesis, to be tested with this proposal, that bees use high temporal resolution and odor-learning for odor-background segregation. This allows the animal to create a neural representation of the spatio-temporal structure of the olfactory world. Odorants from the same sources fluctuate synchronously, while odorants from different sources fluctuate asynchronously. Understanding how small and fast fluctuations in relative concentrations of odor mixtures are used by animals to reliably identify odor sources will help us identify common principles of how animals represent and process their environment.

Odor Plumes

Odor plumes (monitored with TiCl4 smoke) break up into thin filaments. Odor filaments from different odor sources (green and magenta) intermingle. The area chart shows the flucuations of odor concentrations that would be encountered by an insect flying along the black line.
Odor plumes (monitored with TiCl4 smoke) break up into thin filaments. Odor filaments from different odor sources (green and magenta) intermingle. The area chart shows the flucuations of odor concentrations that would be encountered by an insect flying along the black line.

Odors occur in turbulent plumes and quickly break into thin filaments that intermingle with background odors.

We will measure the temporal structure of natural plumes of multiple odorants originating from separate sources with a flying vehicle equipped with moth antennae. We will use this information to mimic the temporal structure of natural multi-odorant plumes in behavioral and physiological experiments with honey bees (Apis mellifera).

Introduction

mothplume

Animals as diverse as mammals, birds and insects use odors to find mates, hosts and food sources. This is a difficult task because natural odors occur in complex turbulent air plumes and the relevant target odors intermingle with plumes of multiple background odors stemming from a variety of natural and anthropogenic sources (vegetation, exhaust fumes, etc.).

It is essential for animals to be able to separate target from background odors. We hypothesize that animals may use temporal information from natural odor fluctuations to achieve odor-background segregation, as odorants from the same source fluctuate together in synchrony, while odorants from different sources do not.

Behavioral studies have shown that insects can indeed use fast temporal stimulus cues but it is not yet known how the brain accomplishes the difficult task of odor-background segregation. In this project we will investigate the neural mechanisms of odor-background segregation using the honey bee as model organism.

Honey bees visit many different flower species for nectar and pollen. However, over a series of trips an individual forager bee only visits a single flower species on which it has found nectar previously, a phenomenon called floral constancy. To localizes the target flowers in a natural environment bees use several cues, including odors. As the bee is challenged by multiple background odors in every flower patch, bees must be equipped with efficient mechanisms of odor-background segregation.

Project Aims    Project Team    Research Plan    Funding

Publications

Journal papers

Noriyasu Ando*, Shuhei Emoto, Ryohei Kanzaki (2016) Insect-controlled robot: a mobile robot platform to evaluate odor-tracking capability of an insect. Journal of Visualized Experiments, 118 e54802. doi: 10.3791/54802

Noriyasu Ando*, Ryohei Kanzaki (2017) Using insects to drive mobile robots—hybrid robots bridge the gap between biological and artificial systems. Arthropod Structure and Development. in press. doi: 10.1016/j.asd.2017.02.003

Raiser Georg, Galizia C Giovanni, Szyszka Paul (2016) A high-bandwidth dual-channel olfactory stimulator for studying temporal sensitivity of olfactory processing Chem Senses 42(2):141-151. doi: 10.1093/chemse/bjw114

Ho Ka Chan, Yang D-P, Zhou C and Thomas Nowotny (2016) Burst Firing Enhances Neural Output Correlation. Front. Comput. Neurosci. 10:42. doi: 10.3389/fncom.2016.00042

Irina Sinakevitch, George R. Bjorklund, Jason M. Newbern, Richard C. Gerkin, Brian H. Smith (2017) Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human. Biological Cybernetics doi: 10.1007/s00422-017-0728-8

References

The following bibliography highlights research underpinning or related to the project.

  1. Murlis, J., Elkinton, J. S. & Carde, R. T. Odor Plumes and How Insects Use Them. Annu Rev Entomol 37, 505-532 (1992).
  2. Baker, T. C., Fadamiro, H. Y. & Cosse, A. A. Moth uses fine tuning for odour resolution. Nature 393, 530-530 (1998).
  3. Fadamiro, H. Y., Cosse, A. A. & Baker, T. C. Fine-scale resolution of closely spaced pheromone and antagonist filaments by flying male Helicoverpa zea. Journal of Comparative Physiology A 185, 11 (1999).
  4. Nikonov, A. A. & Leal, W. S. Peripheral coding of sex pheromone and a behavioral antagonist in the Japanese beetle, Popillia japonica. J Chem Ecol 28, 1075-1089 (2002).
  5. Andersson, M. N., Binyameen, M., Sadek, M. M. & Schlyter, F. Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth. J Chem Ecol 37, 899-911, doi:10.1007/s10886-011-9995-3 (2011).
  6. Szyszka, P., Stierle, J. S., Biergans, S. & Galizia, C. G. The Speed of Smell: Odor-Object Segregation within Milliseconds. PloS one 7, e36096 (2012).
  7. Stierle, J. S., Galizia, C. G. & Szyszka, P. Millisecond stimulus onset-asynchrony enhances information about components in an odor mixture. The Journal of neuroscience : the official journal of the Society for Neuroscience 33, 6060-6069, doi:10.1523/JNEUROSCI.5838-12.2013 (2013).
  8. Hopfield, J. J. Olfactory Computation and Object Perception. P Natl Acad Sci USA 88, 6462-6466 (1991).
  9. Broome, B. M., Jayaraman, V. & Laurent, G. Encoding and decoding of overlapping odor sequences. Neuron 51, 467-482, doi:DOI 10.1016/j.neuron.2006.07.018 (2006).
  10. Nowotny, T., Stierle, J. S., Galizia, C. G. & Szyszka, P. Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation. Brain research 1536, 119-134, doi:10.1016/j.brainres.2013.05.038 (2013).
  11. Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nature neuroscience 16, 1830-1839, doi:10.1038/nn.3570 (2013).
  12. Frisch, K. v. Tanzsprache und Orientierung der Bienen. Springer, Heidelberg (1965).
  13. Waser, N. M. Flower Constancy – Definition, Cause, and Measurement. Am Nat 127, 593-603, doi:Doi 10.1086/284507 (1986).
  14. Menzel, R. The honeybee as a model for understanding the basis of cognition. Nature reviews. Neuroscience 13, 758-768, doi:10.1038/nrn3357 (2012).
  15. Sandoz, J. C. Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Frontiers in systems neuroscience 5, 98, doi:10.3389/fnsys.2011.00098 (2011).
  16. Vickers, N. J. Mechanisms of animal navigation in odor plumes. The Biological bulletin 198, 203-212 (2000).
  17. Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. Cell 102, 147-159 (2000).
  18. Sachse, S., Rappert, A. & Galizia, C. G. The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. The European journal of neuroscience 11, 3970-3982 (1999).
  19. Menzel, R. The insect mushroom body, an experience-dependent recoding device. Journal of physiology, Paris, doi:10.1016/j.jphysparis.2014.07.004 (2014).
  20. Szyszka, P., Ditzen, M., Galkin, A., Galizia, C. G. & Menzel, R. Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. Journal of neurophysiology 94, 3303-3313, doi:10.1152/jn.00397.2005 (2005).
  21. Smith, B. H. Analysis of interaction in binary odorant mixtures. Physiology & behavior 65, 397-407 (1998).
  22. Jinks, A. & Laing, D. G. The analysis of odor mixtures by humans: evidence for a configurational process. Physiology & behavior 72, 51-63 (2001).
  23. Riffell, J. A. et al. Flower discrimination by pollinators in a dynamic chemical environment. Science (2014).
  24. Joerges, J., Kuttner, A., Galizia, C. G. & Menzel, R. Representations of odours and odour mixtures visualized in the honeybee brain. Nature 387, 285-288 (1997).
  25. Silbering, A. F. & Galizia, C. G. Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. The Journal of neuroscience : the official journal of the Society for Neuroscience 27, 11966-11977, doi:10.1523/JNEUROSCI.3099-07.2007 (2007).
  26. Deisig, N., Giurfa, M., Lachnit, H. & Sandoz, J. C. Neural representation of olfactory mixtures in the honeybee antennal lobe. The European journal of neuroscience 24, 1161-1174, doi:10.1111/j.1460-9568.2006.04959.x (2006).
  27. Lei, H. & Vickers, N. Central processing of natural odor mixtures in insects. J Chem Ecol 34, 915-927, doi:10.1007/s10886-008-9487-2 (2008).
  28. Deisig, N., Giurfa, M. & Sandoz, J. C. Antennal lobe processing increases separability of odor mixture representations in the honeybee. Journal of neurophysiology 103, 2185-2194, doi:10.1152/jn.00342.2009 (2010).
  29. Faber, T., Joerges, J. & Menzel, R. Associative learning modifies neural representations of odors in the insect brain. Nature neuroscience 2, 74-78 (1999).
  30. Szyszka, P., Galkin, A. & Menzel, R. Associative and non-associative plasticity in kenyon cells of the honeybee mushroom body. Frontiers in systems neuroscience 2, 3, doi:10.3389/neuro.06.003.2008 (2008).
  31. Fernandez, P. C., Locatelli, F. F., Person-Rennell, N., Deleo, G. & Smith, B. H. Associative conditioning tunes transient dynamics of early olfactory processing. The Journal of neuroscience : the official journal of the Society for Neuroscience 29, 10191-10202, doi:10.1523/JNEUROSCI.1874-09.2009 (2009).
  32. Rath, L., Giovanni Galizia, C. & Szyszka, P. Multiple memory traces after associative learning in the honey bee antennal lobe. The European journal of neuroscience 34, 352-360, doi:10.1111/j.1460-9568.2011.07753.x (2011).
  33. Akers, R. P. & Getz, W. M. Response of olfactory receptor neurons in honeybees to odorants and their binary mixtures. Journal of Comparative Physiology A 173, 16 (1993).
  34. Su, C. Y., Menuz, K., Reisert, J. & Carlson, J. R. Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature 492, 66-71, doi:10.1038/nature11712 (2012).
  35. Stopfer, M., Bhagavan, S., Smith, B. H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390, 70-74 (1997).
  36. Froese, A., Szyszka, P. & Menzel, R. Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 200, 183-195, doi:10.1007/s00359-013-0877-8 (2014).
  37. Bitterman, M. E., Menzel, R., Fietz, A. & Schafer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97, 107-119 (1983).
  38. Farooqui, T., Robinson, K., Vaessin, H. & Smith, B. H. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. The Journal of neuroscience : the official journal of the Society for Neuroscience 23, 5370-5380 (2003).
  39. Farooqui, T., Vaessin, H. & Smith, B. H. Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. Journal of insect physiology 50, 701-713, doi:10.1016/j.jinsphys.2004.04.014 (2004).
  40. Chung, B. Y., Kilman, V. L., Keath, J. R., Pitman, J. L. & Allada, R. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Current biology : CB 19, 386-390, doi:10.1016/j.cub.2009.01.040 (2009).
  41. Hosie, A. M., Aronstein, K., Sattelle, D. B. & ffrench-Constant, R. H. Molecular biology of insect neuronal GABA receptors. Trends in neurosciences 20, 578-583 (1997).
  42. Ffrench-Constant, R. H., Mortlock, D. P., Shaffer, C. D., MacIntyre, R. J. & Roush, R. T. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. Proc Natl Acad Sci U S A 88, 7209-7213 (1991).
  43. Harvey, R. J., Chinchetru, M. A. & Darlison, M. G. Alternative splicing of a 51-nucleotide exon that encodes a putative protein kinase C phosphorylation site generates two forms of the chicken gamma-aminobutyric acidA receptor beta 2 subunit. J Neurochem 62, 10-16 (1994).
  44. Henderson, J. E., Soderlund, D. M. & Knipple, D. C. Characterization of a putative gamma-aminobutyric acid (GABA) receptor beta subunit gene from Drosophila melanogaster. Biochemical and biophysical research communications 193, 474-482, doi:10.1006/bbrc.1993.1648 (1993).
  45. Aronstein, K. & Ffrench-Constant, R. Immunocytochemistry of a novel GABA receptor subunit Rdl in Drosophila melanogaster. Invertebrate neuroscience : IN 1, 25-31 (1995).
  46. Harrison, J. B. et al. Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system in Drosophila melanogaster. Cell and tissue research 284, 269-278 (1996).
  47. Jones, A. K. & Sattelle, D. B. The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. Invertebrate neuroscience : IN 6, 123-132, doi:10.1007/s10158-006-0026-y (2006).
  48. Dupuis, J. P. et al. Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing. Journal of neurophysiology 103, 458-468, doi:10.1152/jn.00798.2009 (2010).
  49. Ffrench-Constant, R. H. & Rocheleau, T. A. Drosophila gamma-aminobutyric acid receptor gene Rdl shows extensive alternative splicing. J Neurochem 60, 2323-2326 (1993).
  50. Glueck, S. B. Molecular evolution of Rdl in insects. PhD Dissertation Cornell University (1998).
  51. Wang, Y. et al. Down-regulation of honey bee IRS gene biases behavior toward food rich in protein. PLoS genetics 6, e1000896, doi:10.1371/journal.pgen.1000896 (2010).
  52. Wang, Y., Brent, C. S., Fennern, E. & Amdam, G. V. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS genetics 8, e1002779, doi:10.1371/journal.pgen.1002779 (2012).
  53. Matsumoto, Y., Menzel, R., Sandoz, J. C. & Giurfa, M. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: A step toward standardized procedures. Journal of neuroscience methods 211, 159-167, doi:10.1016/j.jneumeth.2012.08.018 (2012).
  54. Nowotny, T., Huerta, R., Abarbanel, H. D. & Rabinovich, M. I. Self-organization in the olfactory system: one shot odor recognition in insects. Biol Cybern 93, 436-446, doi:10.1007/s00422-005-0019-7 (2005).
  55. Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H. D. & Rabinovich, M. I. Learning classification in the olfactory system of insects. Neural computation 16, 1601-1640, doi:10.1162/089976604774201613 (2004).
  56. Hammer, M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366, 59-63 (1993).
  57. Hammer, M. & Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem 5, 146-156 (1998).
  58. Nowotny, T. Flexible neuronal network simulation framework using code generation for NVidia® CUDA™. BMC neuroscience 12(Suppl 1): P239 (2011).
  59. Mayer, M. S., Mankin, R. W. & Lemire, G. F. Quantitation of the Insect Electroantennogram – Measurement of Sensillar Contributions, Elimination of Background Potentials, and Relationship to Olfactory Sensation. Journal of insect physiology 30, 757-763 (1984).
  60. Sakurai, T. et al. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS genetics 7, e1002115, doi:10.1371/journal.pgen.1002115 (2011).
  61. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703-714, doi:10.1016/j.neuron.2004.08.019 (2004).
  62. Kanzaki, R., Minegishi, R., Namiki, S. & Ando, N. Insect-machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 199, 1037-1052, doi:10.1007/s00359-013-0832-8 (2013).
  63. Martinez, D., Arhidi, L., Demondion, E., Masson, J. B. & Lucas, P. Using insect electroantennogram sensors on autonomous robots for olfactory searches. Journal of visualized experiments : JoVE, doi:10.3791/51704 (2014).

Team

The project is a collaboration between:-

  • Department of Neurobiology, Universität Konstanz, Germany.
    The principal investigator and Project Coodinator will be Dr Paul Szyszka  paul.szyszka@uni-konstanz.de
    The team will focus on the insect physiology aspects of the project.
  • Research Center for Advanced Science and Technology,
    University of Tokyo, Japan
    The principal investigator will be Professor Ryohei Kanzaki.
    ryohei_kanzaki@nifty.com
    The team will focus on odor plume dynamics and robotics aspects of the project. 

Project Introduction    Project Aims   Research Plan    Funding