A Human Frontier Science Program project investigating mechanisms of odor-background segregation by insects
References
The following bibliography highlights research underpinning or related to the project.
Murlis, J., Elkinton, J. S. & Carde, R. T. Odor Plumes and How Insects Use Them. Annu Rev Entomol37, 505-532 (1992).
Baker, T. C., Fadamiro, H. Y. & Cosse, A. A. Moth uses fine tuning for odour resolution. Nature393, 530-530 (1998).
Fadamiro, H. Y., Cosse, A. A. & Baker, T. C. Fine-scale resolution of closely spaced pheromone and antagonist filaments by flying male Helicoverpa zea. Journal of Comparative Physiology A185, 11 (1999).
Nikonov, A. A. & Leal, W. S. Peripheral coding of sex pheromone and a behavioral antagonist in the Japanese beetle, Popillia japonica. J Chem Ecol28, 1075-1089 (2002).
Andersson, M. N., Binyameen, M., Sadek, M. M. & Schlyter, F. Attraction modulated by spacing of pheromone components and anti-attractants in a bark beetle and a moth. J Chem Ecol37, 899-911, doi:10.1007/s10886-011-9995-3 (2011).
Szyszka, P., Stierle, J. S., Biergans, S. & Galizia, C. G. The Speed of Smell: Odor-Object Segregation within Milliseconds. PloS one7, e36096 (2012).
Stierle, J. S., Galizia, C. G. & Szyszka, P. Millisecond stimulus onset-asynchrony enhances information about components in an odor mixture. The Journal of neuroscience : the official journal of the Society for Neuroscience33, 6060-6069, doi:10.1523/JNEUROSCI.5838-12.2013 (2013).
Hopfield, J. J. Olfactory Computation and Object Perception. P Natl Acad Sci USA88, 6462-6466 (1991).
Broome, B. M., Jayaraman, V. & Laurent, G. Encoding and decoding of overlapping odor sequences. Neuron51, 467-482, doi:DOI 10.1016/j.neuron.2006.07.018 (2006).
Nowotny, T., Stierle, J. S., Galizia, C. G. & Szyszka, P. Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation. Brain research1536, 119-134, doi:10.1016/j.brainres.2013.05.038 (2013).
Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nature neuroscience16, 1830-1839, doi:10.1038/nn.3570 (2013).
Frisch, K. v. Tanzsprache und Orientierung der Bienen. Springer, Heidelberg (1965).
Waser, N. M. Flower Constancy – Definition, Cause, and Measurement. Am Nat127, 593-603, doi:Doi 10.1086/284507 (1986).
Menzel, R. The honeybee as a model for understanding the basis of cognition. Nature reviews. Neuroscience13, 758-768, doi:10.1038/nrn3357 (2012).
Sandoz, J. C. Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Frontiers in systems neuroscience5, 98, doi:10.3389/fnsys.2011.00098 (2011).
Vickers, N. J. Mechanisms of animal navigation in odor plumes. The Biological bulletin198, 203-212 (2000).
Vosshall, L. B., Wong, A. M. & Axel, R. An olfactory sensory map in the fly brain. Cell102, 147-159 (2000).
Sachse, S., Rappert, A. & Galizia, C. G. The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. The European journal of neuroscience11, 3970-3982 (1999).
Menzel, R. The insect mushroom body, an experience-dependent recoding device. Journal of physiology, Paris, doi:10.1016/j.jphysparis.2014.07.004 (2014).
Szyszka, P., Ditzen, M., Galkin, A., Galizia, C. G. & Menzel, R. Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. Journal of neurophysiology94, 3303-3313, doi:10.1152/jn.00397.2005 (2005).
Smith, B. H. Analysis of interaction in binary odorant mixtures. Physiology & behavior65, 397-407 (1998).
Jinks, A. & Laing, D. G. The analysis of odor mixtures by humans: evidence for a configurational process. Physiology & behavior72, 51-63 (2001).
Riffell, J. A. et al. Flower discrimination by pollinators in a dynamic chemical environment. Science (2014).
Joerges, J., Kuttner, A., Galizia, C. G. & Menzel, R. Representations of odours and odour mixtures visualized in the honeybee brain. Nature387, 285-288 (1997).
Silbering, A. F. & Galizia, C. G. Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. The Journal of neuroscience : the official journal of the Society for Neuroscience27, 11966-11977, doi:10.1523/JNEUROSCI.3099-07.2007 (2007).
Deisig, N., Giurfa, M., Lachnit, H. & Sandoz, J. C. Neural representation of olfactory mixtures in the honeybee antennal lobe. The European journal of neuroscience24, 1161-1174, doi:10.1111/j.1460-9568.2006.04959.x (2006).
Lei, H. & Vickers, N. Central processing of natural odor mixtures in insects. J Chem Ecol34, 915-927, doi:10.1007/s10886-008-9487-2 (2008).
Deisig, N., Giurfa, M. & Sandoz, J. C. Antennal lobe processing increases separability of odor mixture representations in the honeybee. Journal of neurophysiology103, 2185-2194, doi:10.1152/jn.00342.2009 (2010).
Faber, T., Joerges, J. & Menzel, R. Associative learning modifies neural representations of odors in the insect brain. Nature neuroscience2, 74-78 (1999).
Szyszka, P., Galkin, A. & Menzel, R. Associative and non-associative plasticity in kenyon cells of the honeybee mushroom body. Frontiers in systems neuroscience2, 3, doi:10.3389/neuro.06.003.2008 (2008).
Fernandez, P. C., Locatelli, F. F., Person-Rennell, N., Deleo, G. & Smith, B. H. Associative conditioning tunes transient dynamics of early olfactory processing. The Journal of neuroscience : the official journal of the Society for Neuroscience29, 10191-10202, doi:10.1523/JNEUROSCI.1874-09.2009 (2009).
Rath, L., Giovanni Galizia, C. & Szyszka, P. Multiple memory traces after associative learning in the honey bee antennal lobe. The European journal of neuroscience34, 352-360, doi:10.1111/j.1460-9568.2011.07753.x (2011).
Akers, R. P. & Getz, W. M. Response of olfactory receptor neurons in honeybees to odorants and their binary mixtures. Journal of Comparative Physiology A173, 16 (1993).
Su, C. Y., Menuz, K., Reisert, J. & Carlson, J. R. Non-synaptic inhibition between grouped neurons in an olfactory circuit. Nature492, 66-71, doi:10.1038/nature11712 (2012).
Stopfer, M., Bhagavan, S., Smith, B. H. & Laurent, G. Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature390, 70-74 (1997).
Froese, A., Szyszka, P. & Menzel, R. Effect of GABAergic inhibition on odorant concentration coding in mushroom body intrinsic neurons of the honeybee. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology200, 183-195, doi:10.1007/s00359-013-0877-8 (2014).
Bitterman, M. E., Menzel, R., Fietz, A. & Schafer, S. Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol97, 107-119 (1983).
Farooqui, T., Robinson, K., Vaessin, H. & Smith, B. H. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. The Journal of neuroscience : the official journal of the Society for Neuroscience23, 5370-5380 (2003).
Farooqui, T., Vaessin, H. & Smith, B. H. Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. Journal of insect physiology50, 701-713, doi:10.1016/j.jinsphys.2004.04.014 (2004).
Chung, B. Y., Kilman, V. L., Keath, J. R., Pitman, J. L. & Allada, R. The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Current biology : CB19, 386-390, doi:10.1016/j.cub.2009.01.040 (2009).
Hosie, A. M., Aronstein, K., Sattelle, D. B. & ffrench-Constant, R. H. Molecular biology of insect neuronal GABA receptors. Trends in neurosciences20, 578-583 (1997).
Ffrench-Constant, R. H., Mortlock, D. P., Shaffer, C. D., MacIntyre, R. J. & Roush, R. T. Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. Proc Natl Acad Sci U S A88, 7209-7213 (1991).
Harvey, R. J., Chinchetru, M. A. & Darlison, M. G. Alternative splicing of a 51-nucleotide exon that encodes a putative protein kinase C phosphorylation site generates two forms of the chicken gamma-aminobutyric acidA receptor beta 2 subunit. J Neurochem62, 10-16 (1994).
Henderson, J. E., Soderlund, D. M. & Knipple, D. C. Characterization of a putative gamma-aminobutyric acid (GABA) receptor beta subunit gene from Drosophila melanogaster. Biochemical and biophysical research communications193, 474-482, doi:10.1006/bbrc.1993.1648 (1993).
Aronstein, K. & Ffrench-Constant, R. Immunocytochemistry of a novel GABA receptor subunit Rdl in Drosophila melanogaster. Invertebrate neuroscience : IN1, 25-31 (1995).
Harrison, J. B. et al. Immunocytochemical mapping of a C-terminus anti-peptide antibody to the GABA receptor subunit, RDL in the nervous system in Drosophila melanogaster. Cell and tissue research284, 269-278 (1996).
Jones, A. K. & Sattelle, D. B. The cys-loop ligand-gated ion channel superfamily of the honeybee, Apis mellifera. Invertebrate neuroscience : IN6, 123-132, doi:10.1007/s10158-006-0026-y (2006).
Dupuis, J. P. et al. Homomeric RDL and heteromeric RDL/LCCH3 GABA receptors in the honeybee antennal lobes: two candidates for inhibitory transmission in olfactory processing. Journal of neurophysiology103, 458-468, doi:10.1152/jn.00798.2009 (2010).
Ffrench-Constant, R. H. & Rocheleau, T. A. Drosophila gamma-aminobutyric acid receptor gene Rdl shows extensive alternative splicing. J Neurochem60, 2323-2326 (1993).
Glueck, S. B. Molecular evolution of Rdl in insects. PhD Dissertation Cornell University (1998).
Wang, Y. et al. Down-regulation of honey bee IRS gene biases behavior toward food rich in protein. PLoS genetics6, e1000896, doi:10.1371/journal.pgen.1000896 (2010).
Wang, Y., Brent, C. S., Fennern, E. & Amdam, G. V. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees. PLoS genetics8, e1002779, doi:10.1371/journal.pgen.1002779 (2012).
Matsumoto, Y., Menzel, R., Sandoz, J. C. & Giurfa, M. Revisiting olfactory classical conditioning of the proboscis extension response in honey bees: A step toward standardized procedures. Journal of neuroscience methods211, 159-167, doi:10.1016/j.jneumeth.2012.08.018 (2012).
Nowotny, T., Huerta, R., Abarbanel, H. D. & Rabinovich, M. I. Self-organization in the olfactory system: one shot odor recognition in insects. Biol Cybern93, 436-446, doi:10.1007/s00422-005-0019-7 (2005).
Huerta, R., Nowotny, T., Garcia-Sanchez, M., Abarbanel, H. D. & Rabinovich, M. I. Learning classification in the olfactory system of insects. Neural computation16, 1601-1640, doi:10.1162/089976604774201613 (2004).
Hammer, M. An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature366, 59-63 (1993).
Hammer, M. & Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn Mem5, 146-156 (1998).
Nowotny, T. Flexible neuronal network simulation framework using code generation for NVidia® CUDA™. BMC neuroscience12(Suppl 1): P239 (2011).
Mayer, M. S., Mankin, R. W. & Lemire, G. F. Quantitation of the Insect Electroantennogram – Measurement of Sensillar Contributions, Elimination of Background Potentials, and Relationship to Olfactory Sensation. Journal of insect physiology30, 757-763 (1984).
Sakurai, T. et al. A single sex pheromone receptor determines chemical response specificity of sexual behavior in the silkmoth Bombyx mori. PLoS genetics7, e1002115, doi:10.1371/journal.pgen.1002115 (2011).
Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron43, 703-714, doi:10.1016/j.neuron.2004.08.019 (2004).
Kanzaki, R., Minegishi, R., Namiki, S. & Ando, N. Insect-machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology199, 1037-1052, doi:10.1007/s00359-013-0832-8 (2013).
Martinez, D., Arhidi, L., Demondion, E., Masson, J. B. & Lucas, P. Using insect electroantennogram sensors on autonomous robots for olfactory searches. Journal of visualized experiments : JoVE, doi:10.3791/51704 (2014).