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Chemical components in Coffee Aroma

Odor component 𝝁𝒈/𝒍* Odor component 𝝁𝒈/𝒍*

Acetaldehyde 4700 3-Hydroxy-4,5-dimethyl-2(5H)-furanone 80

Methylpropanal 760 (E)-P-Damascenone 1.6

2-Methylbutanal 870 Guaiacol 120

3-Methylbutanal 570 4-Ethylguaiacol 48

2,3-Butanedione 2100 4-Vinylguaiacol 740

2,3-Pentanedione 1600 Vanillin 210

2-Ethyl-3,5-dimethylpyrazine 17 2-Furfurylthiol 17

2-Ethenyl-3,5-dimethylpyrazine 1.0 Methional 10

2,3-Diethyl-5-methylpyrazine 3.6 3-Mercapto-3-methylbutyl formate 5.7

2-Ethenyl-3-ethyl-5-methylpyryzine 0.2 2-Methyl-3-furanthiol 1.1

3-Isobutyl-2-methoxypyrazine 1.5 3-Methyl-2-buten-1-thiol 0.6

4-Hydroxy-2,5-dimethyl-3(2H)-furanone 7200 Methanethiol 170

2(5)-Ethyl-4-hydroxy-5(2)-methyl-3(2H)-furanone 800

Mayer et al. Eur Food Res Technol (2000)*in coffee brew



Odours mix in complex plumes

Example: Cocktail party thing?

Marc Weissburg et al. J Exp Biol 2012;215:4175-4182
©2012 by The Company of Biologists Ltd

Odour molecules from 

different sources mix and 

mingle with each other

Odour plumes have distinct 

filaments, but with only ms

delays in between



Problems of odour mixture processing

• Information about the mixtures as a whole

• Information about individual components in the mixtures

• How to switch between coding the whole mixture and individual 
components?

This talk: Is there a qualitative difference between olfactory response to 

mixtures of  chemical compounds and a single chemical



The olfactory system of honey bees

J-C Sandoz, Frontiers Syst Neurosci (2011)
Sensillum
Placodea

Olfactory receptor 
neuron (ORN)



Roadmap

• Building a simple biophysical, partially data-driven model of  honeybees’ 
early olfactory system (receptors, ORNs and antennal lobe)

• Model response to single-component stimuli and comparison with 
experimental data

• Comparison between model response to multi and single component 
stimuli (focus on receptor dynamics), preliminary experimental 
evidence and its implication on coding. 

• Limitation of  our model and future work



Limitation when building models of animals’ 
sensory systems

Lack of  experimental data

• Low temporal and spatial resolution, e.g. Ca2+ 

imaging at glomerulus resolution

• Entire parts of  the system are not observable,

e.g. In honeybees, only 30 of  a total of  160 

glomeruli in the antennal lobe (AL) can be 

routinely measured from Ca2+ imaging 

(Galizia et al, 1999) Glomeruli which can be routinely 
measured
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Limitation of building models of animals’ 
sensory systems

Large animal-to-animal and/or trial-to-trial 
variability in response to the same stimuli 

Animal-to-animal variability from Galizia et al 

(1999). Each row corresponds to response to 

1-hexanol from a different honey bee. 



Typical modelling approaches

1. Reduced sized model

 Problems with scaling of  noise; finite size network effects; information 
capacity estimation

2. Model that fit to data

Overfitting; limited in scope; high amount of  computation; large 
animal-to-animal variability

3. Phenomenological model

Hard to pinpoint relevant biophysical processes. 



“Statistical bio-physical modelling”

Our model …

• Considers the full receptor repertoire of  honeybees

• Conforms to the statistics of  the experimental data we used

• Agrees with other experimental results not used to build it

• Is analytically tractable for most parts and otherwise requires 

only a small amount of  computation



Our approach in building the model

1. Extrapolation of  experimental ORN data (responses to 28 different 
types of  ORNs from bath applied Ca2+ imaging (Galizia et al, 1999))

2. Converting the generated response patterns, which are in the form of  
conductance, into firing rate

3. Building a simple AL network and generating response patterns for 
local neurons (LNs) and projection neurons (PNs)

We used a single ORN to represent all ORNs with the same receptor 

type, a single PN/LN to represent all PNs/LNs in a gloumerulus



Experimental data
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Extrapolation of experimental ORN data

Generating the asymptotic response to odours at 

saturating concentration

• Responses of  new units generated from a combination of  

previously generated responses and noises, inspired by 

Haenicke (PhD thesis, 2015)

• Matching the mean and variance of  the magnitude of  

ORN responses to different odours

• Matching the statistical distribution of  pairwise correlation 

between response vectors of  ORN pairs
𝑚 = 16, 𝑛 = 160

𝑟11 ⋯ 𝑟1𝑛
⋮ ⋱ ⋮

𝑟𝑚1 ⋯ 𝑟𝑚𝑛

ORN type

o
d

o
r

𝑐𝑜𝑟𝑟(𝑟∙ 1, 𝑟∙ 𝑛)



Extrapolation of experimental ORN data

Generating the asymptotic response to odours at saturating 
concentration

• Responses of  new units generated from a combination of  

previously generated responses and noises, inspired by Haenicke

(PhD thesis, 2015)

• Matching the mean and variance of  the magnitude of  ORN 

responses to different odours

• Matching the statistical distribution of  pairwise correlation 

between response vectors of  ORN pairs

• Matching the correlation of  ORN responses patterns to 

different odours, measured by normalized Euclidean distance 𝑚 = 16, 𝑛 = 160

𝑟11 ⋯ 𝑟1𝑛
⋮ ⋱ ⋮

𝑟𝑚1 ⋯ 𝑟𝑚𝑛

ORN type

o
d

o
r

𝑐𝑜
𝑟𝑟
(𝑟
1
∙
,𝑟
𝑚

∙)



Extrapolation of experimental ORN data

Chemical similarity of  odour in experimental data (Galizia et al., 1999), 

measured by normalized Euclidean distance

Model matches statistics 

on both dimensions!

𝑟11 ⋯ 𝑟1𝑛
⋮ ⋱ ⋮

𝑟𝑚1 ⋯ 𝑟𝑚𝑛

ORN type

o
d

o
r

𝑐𝑜
𝑟𝑟
(𝑟
1
∙
,𝑟
𝑚

∙)𝑟11 ⋯ 𝑟1𝑛
⋮ ⋱ ⋮

𝑟𝑚1 ⋯ 𝑟𝑚𝑛

ORN type

o
d

o
r

𝑐𝑜𝑟𝑟(𝑟∙ 1, 𝑟∙ 𝑛)

Pairwise correlation between response 

patterns of  different ORNs



𝑘1 (𝑘−1) and 𝑘2 (𝑘−2) :rate of  receptor (un)binding and (de)activation.   

𝑛: transduction constant 𝑐: stimulus concentration

We sampled these variables from statistical distributions. They are constrained by (i) 

the asymptotic response obtained previously (ii) statistics of  dose-concentration 

relationship (Gremiaux, 2012) and (iii) the typical response speed of  the system. 

Receptor dynamics

(Rospars et al, 2008)

𝑟0 : unbound receptor

𝑟 : bound receptor

𝑟∗: activated receptor

ሶ𝑟0 = 𝑘−1𝑟 − 𝑘1𝑐
𝑛𝑟0

ሶ𝑟 = 𝑘1𝑐
𝑛𝑟0 − 𝑘−1𝑟 + 𝑘−2𝑟

∗ − 𝑘2𝑟

ሶ𝑟∗ = 𝑘2𝑟 − 𝑘−2𝑟
∗

Correspond to input 
conductance to ORNs



Neuron model

• Ca2+ imaging data most closely related to conductance

• To obtain the firing rate of  ORN, we used a conductance based leaky 

integrate-and-fire (LIF) model with adaptation

Here 𝐼eff is the effective input current, which depends on conductances (here 

described by 𝑟∗). For details please refer to Chan et al. (2016)



Rate model

• Assuming time-invariant input (constant noise and adiabatic approximation), the 

firing rate (at equilibrium) can be obtained analytically

𝑉 = 𝑉reset 𝑒
−𝑡

𝜏eff + 𝐼eff 1 − 𝑒
−

𝑡

τeff −
𝜏adapt 𝐼adapt

max

𝜏adapt−𝜏eff
𝑒
−

𝑡

𝜏adapt − 𝑒
−

𝑡

𝜏eff ,

• The instantaneous firing rate can then be obtained by

𝜈 =
1

𝑡thres
+ 𝑡refract,

𝑡thres : time when 𝑉 reaches the firing threshold

𝑡refract : absolute refractory period.



Simple AL network

• Each ORN provides one-to-one
excitatory input to a single
glomerulus containing a PN and
an LN

• PNs and LNs both receive
inhibitory input from LNs of all
other glomeruli but not their own
glomerulus

Reduced AL network

We used a single ORN to represent 

all ORNs with the same receptor 

type, a single PN/LN to represent all 

PNs/LNs in a gloumerulus



AL network

LN-PN connectivity: based on the correlations 
between the activities of  the ORNs to which they 
are connected, as suggested by Linster et al. (2005)

𝑐𝑜𝑛𝑛𝑖𝑗 = 1 − 𝛿𝑖𝑗 [ 𝑐𝑜𝑛𝑛𝑏 × 𝜉unif +𝐻 𝑐𝑜𝑟𝑟𝑖𝑗 ×
𝑐𝑜𝑟𝑟𝑖𝑗 1 + 𝐶𝜉norm ]

𝛿𝑖𝑗 : Kronecker delta function       
𝐻 : Heaviside step function
𝑐𝑜𝑛𝑛𝑏 and 𝐶 : constant parameters

Firing rate of  PN & LN: iteratively generated 

from the rate model previously described 



Results:
Response to single-component stimuli

• ORN Pulse tracking

• Dose-response relationship in PN

• Correlations in responses across different PNs

• ORN-PN correlations



Results (ORN pulse tracking)

Top black: electro-

antennogram recordings 

Syzszka et al (2014) (top, 

black line) 

Bottom black: Average 

model ORN responses

Red: concentration of  

odour



Results (dose-response relationship in PN)

The PN response predicted

by our model show a similar

statistical distribution of

dose-response relationship

to calcium imaging results in

Ditzen (PhD thesis, 2005).

Fr
ac

ti
o

n
 o

f 
P

N
s



Results (dose-response relationship in PN)

Probability Density Function for 

pairwise correlation across 

response patterns observed in 

Ca2+ experiments (Galizia et al, 

1999; Ditzen, 2005) and our 

model. 

Model is fitted to the ORN 

distribution but not PN



Decorrelation in PN response across different 
units is caused by LN-PN inhibition

LN-PN inhibition is the most significant

cause of decorrelation. Structure of their

connectivity matrix matters only a little.

This supports the hypothesis by Olsen 

and Wilson (Nature, 2008)



Results (ORN-PN correlations)

Statistical distribution of  the pairwise 

correlation between the overall ORN and 

PN response for different odor stimuli. 

The average correlation is around 0.6-0.7, 

consistent with Deisig et al (2010). 

Decorrelation is caused by both 

non-linearity in LIF neurons 

firing and LN inhibition



Results: Response to mixtures

• Equilibrium solution of  receptor dynamics equation and 

the role of  olfactory transduction process

• Cross-concentration correlation

• Response latency

Comparison will be made with responses to single-component stimuli



𝑘𝑖
1(𝑘𝑖

−1) and 𝑘𝑖
2(𝑘𝑖

−2) describe the rate of  (un)binding and (de)activation 

processes. 

Receptor dynamics equation

𝑟0 : unbound receptor

𝑟 : bound receptor

𝑟∗: activated receptor

What about mixtures?

For single-component:

ሶ𝑟0 = 𝑘−1𝑟 − 𝑘1𝑐
𝑛𝑟0

ሶ𝑟 = 𝑘1𝑐
𝑛𝑟0 − 𝑘−1𝑟 + 𝑘−2𝑟

∗ − 𝑘2𝑟

ሶ𝑟∗ = 𝑘2𝑟 − 𝑘−2𝑟
∗



No good! Response to mixture of  identical components ≠ response to 

single component with concentration added. Inconsistent! (Cruz and 

Lowe, 2013)

A possible extension?

ሶ𝑟0 =෍

𝑗

𝑘−1
𝑗
𝑟𝑗 −෍

𝑗

𝑘1
𝑗
𝑐𝑗

𝑛
𝑟0

ሶ𝑟𝑖 = 𝑘1
𝑗
𝑐𝑗

𝑛
𝑟0 − 𝑘−1

𝑖 𝑟𝑖 + 𝑘−2
𝑖 𝑟𝑖

∗ − 𝑘2
𝑖 𝑟𝑖

ሶ𝑟𝑖
∗ = 𝑘2

𝑖 𝑟𝑖 − 𝑘−2
𝑖 𝑟𝑖

∗

(Rospars et al, 2008; Nowotny et al, 2013)



Our model

ሶ𝑟0 =෍

𝑗

𝑘−1
𝑗
𝑟𝑗 − ෍

𝑗

𝑘1
𝑗
𝑐𝑗

𝑛

𝑟0

ሶ𝑟𝑖 = ෍

𝑗

𝑘1
𝑗
𝑐𝑗

𝑛
𝑘1
𝑖 𝑐𝑖

𝑛

σ𝑗 𝑘1
𝑗
𝑐𝑗

𝑛 𝑟0 − 𝑘−1
𝑖 𝑟𝑖 + 𝑘−2

𝑖 𝑟𝑖
∗ − 𝑘2

𝑖 𝑟𝑖

ሶ𝑟𝑖
∗ = 𝑘2

𝑖 𝑟𝑖 − 𝑘−2
𝑖 𝑟𝑖

∗

For each odor component, rate of binding is still proportional to their ‘effective

affinity’ to receptors, but globally, the total binding rate is determined by applying

the higher-order interactive effects between the odorants and receptor after

taking into account of all components present



Solution to the receptor dynamics equation

• Single odor: 𝑟∗ =
1

1

𝐾2
′ +

1

𝐾eff

1

𝑐eff

• Mixture: 𝑟mix
∗ =

1
1

𝐾2
mix′

+
1

𝐾eff
mix

1

𝑐eff

𝐾2
′:  response to odor at high concentration

𝐾𝑒𝑓𝑓: response gain to odor at low

concentration

𝐾1 =
𝑘1

𝑛

𝑘−1
, 𝐾2 =

𝑘2

𝑘−2

𝐾2
′ = 𝑟total 1 −

1

𝐾2+1
, 𝐾eff = 𝑟total𝐾1𝐾2,

𝐾eff
mix =

σ𝑗 𝑘1
𝑗 𝑛

σ𝑗 𝑘1
𝑗𝑛

σ𝑖 𝑘eff
𝑖 , 𝐾2

mix′ =
1

σ𝑖
𝑝𝑖

𝐾2
𝑖 ′

,𝑝𝑖 =
𝑘eff
𝑖

σ𝑗 𝑘eff
𝑗 ,

𝑟mix
∗ = σ𝑖 𝑟i

∗, 𝑐eff = 𝑐𝑛

Legend: 𝐾𝑒𝑓𝑓, 𝐾2
′

Assuming equal concentration for components



Response at the limit of small 𝑐eff

𝑟∗ = 𝐾eff𝑐eff

𝑟mix
∗ =

σ𝑗 𝑘1
𝑗

𝑛

σ𝑗 𝑘1
𝑗𝑛

෍

𝑖

𝐾eff
𝑖 𝑐eff

𝑤 𝑛 > 1 synergistic

𝑤 𝑛 = 1 linearly additive

𝑤 𝑛 < 1 hypoadditive

Let 𝑤 𝑛 =
σ𝑗 𝑘1

𝑗 𝑛

σ𝑗 𝑘1
𝑗𝑛

σ𝑗 𝑘1
𝑗

𝑛

σ𝑗 𝑘1
𝑗𝑛

=
σ𝑗 𝑘1

𝑗

σ𝑗 𝑘1
𝑗𝑛

1
𝑛

𝑛

=
𝑘1 1

𝑘1 𝑛

𝑛

. 𝑝: 𝐿
𝑝 norm, monotonic decreasing wrt 𝑝

𝑛 > 1

𝑛 = 1

𝑛 < 1



Response at the limit of large 𝑐eff

𝑟∗ = 𝐾2
′

𝑟mix
∗ = 𝐾2

mix′ =
1

σ𝑖
𝑝𝑖
𝐾2
𝑖′

Mixture responses is a weighted 

harmonic mean of  the response of  

its components

Interaction between mixtures is dominated

by the competition of the receptor site.

Effect of interaction in the transduction

processes becomes negligible

Independent of n



Simulation results: Average ORN firing rates

Activation level Firing rate

Experimental measurements (Gremiaux et al 2012) suggests that 𝑛 < 1 for most odor-

receptor combinations. Our model generates 𝑛 accordingly. Dominantly hypoadditive 

responses has been observed Duchamp-Viret et al (2003) and Cruz and Lowe (2013)



Key study 1: Cross-concentration correlation

• Look at the overall ORN response pattern at high and low stimulus 
concentration (same stimulus)

• Intuition:

𝐾2
′ : response to odor at high concentration

𝐾𝑒𝑓𝑓: response gain to odor at low concentration

Cross-concentration correlation will be large and positive 
if 𝑲𝟐

′ and 𝑲𝒆𝒇𝒇 are strongly and positively correlated
𝐾2

′ and 𝐾𝑒𝑓𝑓 positively correlated



Key study 1: Cross-concentration correlation

• Look at the overall ORN response pattern at high and low stimulus 
concentration (same stimulus)

• Intuition:

𝐾2
′ : response to odor at high concentration

𝐾𝑒𝑓𝑓: response gain to odor at low concentration

Cross-concentration correlation will be large and positive 
if 𝑲𝟐

′ and 𝑲𝒆𝒇𝒇 are strongly and positively correlated
𝐾2

′ and 𝐾𝑒𝑓𝑓 anti-correlated



Average responses: Convert the ‘K’s into 
random variables

• Considering the entire input and receptor space: many possible odor-
reception combinations. 

• Each combination 𝑖 can be characterized by parameters, 𝑥1𝑖 , …,  𝑥𝑛𝑖 , 
which are sampled from a parameter sets 𝑥1, …,  𝑥𝑛

• If  we consider a sufficiently large number of  combinations, the sets 
𝑥1, …,  𝑥𝑛 are large and can be assumed to be random variables with 
a certain continuous probability distribution. 

Can now study ensemble behaviour analytically



Question: Are 𝐾eff
mixand 𝐾2

mix′more strongly 
positively correlated than 𝐾𝑒𝑓𝑓 and 𝐾2

′, assuming 

𝐾1 and 𝐾2 are independent?



Numerical experiments (binary mixtures)

Numerical experiments 

studying the correlation 

between 𝐾𝑒𝑓𝑓,𝑚𝑖𝑥 and

𝐾2,𝑚𝑖𝑥
′, and cross-

concentration 

correlation

Prob

distribution 

𝒌𝟏
𝒏

(min,max)/ 𝝁,𝝈
𝒌−𝟏 𝑲𝟐 Mean 

∆corr

% error

𝑲𝐞𝐟𝐟
𝐦𝐢𝐱 and 𝑲𝟐

𝒎𝒊𝒙′, and 𝑲𝒆𝒇𝒇 and 𝑲𝟐
′ (𝒏 = 𝟎. 𝟔𝟓)

Unif (0.5,5) (0.005,0.05) (0.01,1) 0.061 0

Exp(unif) (0.63,31.6) (0.006,0.1) (0.01,1) 0.095 0

Norm 4,1.5 0.03,0.01 0.3,0.15 0.038 0

Unif (0.5,5) (0.005,0.05) (1,10) 0.06 0

Unif (0.01,0.1) (0.1,1) (0.01,1) 0.061 0

Exp(unif) (0.01,1) (0.01,1) (0.01,10) 0.063 0

Log(unif) (0.095,4.61) (0.001,0.1) (0.01,1.1) 0.042 0

Average firing rate (𝒏 = 𝟎. 𝟔𝟓)

Unif (0.5,5) (0.005,0.05) (0.01,1) 0.239 0

Exp(unif) (0.63,31.6) (0.006,0.1) (0.01,1) 0.379 0

Norm 4,1.5 0.03,0.01 0.3,0.15 0.312 0

Average firing rate (variable 𝒏)

Unif (0.5,5) (0.005,0.05) (0.01,1) 0.083 0.009

Exp(unif) (0.63,31.6) (0.006,0.1) (0.01,1) 0.308 0

Norm 4,1.5 0.03,0.01 0.3,0.15 0.101 0.007



Simulation results: Cross-concentration correlation 
increases with the number of components

Cross-concentration correlation of  

the response patterns for both 

ORN and PN increases with the 

number of  components



Key study 2: Response latency

• Response latency, defined as the timing of  the 1st spike after the onset 
of  stimuli, is low if  response at small time (after stimulus onset) is high

Transient response at the limit small 𝑐eff and 𝑡

𝑟∗ =
𝑘2
𝑘−2

𝑘1
𝑛𝑟total𝑐eff𝑡

𝑟mix
∗ =

σ𝑗 𝑘1
𝑗

𝑛

σ𝑗 𝑘1
𝑗𝑛

෍

𝑖

𝑘2
𝑖

𝑘−2
𝑖
𝑘1
𝑖 𝑛𝑟total𝑐eff𝑡

Assumption: 𝑘1
𝑛 ≫ 𝑘−1, 𝐾2

(Biologically realistic)



Key study 2: Response latency

• Comparing the average across many combinations: 𝑟∗

• ‘Fair’ comparison: mixtures at 𝑐 = 𝑐0 and single components at 𝑐 = 𝑁𝑐0
Both would have equal amount of  odour molecules. Any effect 
observed is not due to discrepancy in no of  odour molecules

We have shown that 𝑟∗ 𝑐 = 𝑁𝑐0 ≤ 𝑟mix
∗ 𝑐 = 𝑐0 for 𝑛 ≤ 1

which implies shorter response latency for mixtures 
at the limit of small 𝑐eff

∵ 𝑤(𝑛)
≥ 𝑁𝑛−1



Simulation Experimental (preliminary)

Response latency decreases 
with the number of components

Response latency is smaller for mixtures at low

concentration

Single sensillum recordings from Drosophila (Hersperger

and Syaszka, 2017). Each panel correspond to a different

odour-receptor combination.



Extension of the results

• Components with unequal concentration:  Receptor dynamics equation 

can still be solved. Weighting terms would be added to 𝐾eff
mix and 𝐾2

mix′. 
No qualitative change to the results is expected.

• PN: Shorter response latency for mixtures obviously still holds. Simulation 
results suggest that the results of hypoadditivity in mixture response and 
higher cross-concentration correlation still holds



Potential wider implications

Time series of  concentration of  odour 

received by honey bees under natural 

conditions



Limitation of our model

• No inhibitory response: limitation of  Ca2+ imaging. Can be incorporated 
into the model if  required.

• Assumptions in firing rate calculation: Adiabatic approximation (lack of  
temporal filter for input fluctuation). No stochasticity in the system. 

Note: We are now developing a method to obtain response latency and its 
variability analytically under more realistic conditions.

• Receptor equations: Are there other possible interactions between odour 
molecules and receptors? Or between different ORN types?



Problems of mixture coding

• Mixtures as a whole

• Individual components in the mixtures

Question: In general, when do we want to treat a 

mixture as a whole and when do we want to decipher 

the individual components in a mixture? 

We want to group odour from the same source together!



A problem of odour segregation by honeybees

Chemical A Chemical B Chemical A&B

Bush 1 Bush 2

Can bees perform the task?



Difference between coherent and incoherent 
mixtures

• Odours are transmitted in plumes in which their concentration is 
significantly higher than in the surroundings

• Odours in coherent mixtures are present in the same plumes and hence 
their concentrations co-fluctuate with time



General question: How does a neural network discriminate 
between correlated and uncorrelated signals?

A possible answer: Using temporally correlated excitation 

and inhibition to modulate firing of  neurons
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